Autonomous Driving Group

Mission

Autonomous Driving group is studying autonomous/semi-autonomous control system for vehicles. The topics of this sub group so far covered; autonomous navigation functions(such as object recognition, path-planning driving, and so on), sensor data compression for V2X, learning based control and so on. We are also actively contributing open-source software platform for autonomous vehicle "Autoware".

自動運転グループは、自動車等の移動体を自律的/半自律的に制御する研究に取り組んでいます。研究グループはこれまで、物体認識や経路計画といった自律移動のための機能や、V2Xのための情報圧縮、学習による制御といった研究を行ってきました。グループでは自動運転用オープンソースソフトウェアAutowareへの貢献にも力を入れています

Projects

HMI research software platform for Autonomous Vehicles (OPERA Project 4-5)

Developing HMI(Human Machine Interaction) research software platform for autonomous vehicles.(JST/OPERA、JST/COI)

http://www.nagoya-u.ac.jp/about-nu/public-relations/researchinfo/upload_images/20181025_I.pdf

https://youtu.be/EkVdZUEEFwM

Open Source Integrated Planner for Autonomous Vehicles

Path planning is one of the important functions for autonomous vehicles. In this research, we develop open source path planner for autonomous vehicles. The planner covers almost functions to go to destination these are global planner, behavior state machine, obstacle avoidance.

経路計画は自動運転を実現するうえで重要な機能です。本研究では、オープンソースの自動運転用経路計画ソフトウェアを開発しています。動作計画機能には、大域的経路計画や状態遷移、障害物回避等、自律走行に必要な機能を一通り搭載しており、様々な場所での自動運転を実現しています。

  • Hatem Darweesh, Eijiro Takeuchi, Kazuya Takeda, Yoshiki Ninomiya, Adi Sujiwo, Luis Yoichi Morales, Naoki Akai, Tetsuo Tomizawa, Shinpei Kato. "Open source integrated planner for autonomous navigation in highly dynamic environments," Journal of Robotics and Mechatronics (JRM), vol. 29, no. 4, pp. 668-684, 2017.
  • Hatem, et.al, Estimating The Probabilities of Surrounding Vehicle’s intentions and Trajectories using a Behavior Planner, IJAE Vol.10 No.4, 2019

LiDAR Point Cloud Compression

LiDAR is one of the important sensors for autonomous vehicles. This research proposes various LiDAR point cloud data compression methods to share with other vehicles and store the data. The proposed methods achieve over 1/100 compression performance.

LiDARは自動運転を実現するうえで非常に重要なセンサーです。LiDARのデータは非常に膨大ですが、新しいセンサであり未だ画像のように効率的に圧縮する手法が確立していません。本研究ではLiDARの点群データを圧縮する様々な手法を提案しており、100分の1を超える圧縮率を実現しています。

  • Chenxi Tu, Eijro Takeuchi, Chiyomi Miyajima, Kazuya Takeda,Compressing continuous point cloud data using image compression methods, DOI: 10.1109/ITSC.2016.7795789, Conference: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),2016.(Best Paper Award)
  • Chenxi Tu, Eijro Takeuchi, Chiyomi Miyajima, Kazuya Takeda, “Continuous point cloud data compression using SLAM based prediction,” IEEE 2017 Intelligent Vehicles Symposium (IV ’17), pp. 1744–1751, June 2017.
  • Chenxi Tu, Eijiro Takeuchi, Alexander Carballo, Kazuya Takeda, “Point Cloud Compression for 3D LiDAR Sensor using Recurrent Neural Network with Residual Blocks”, 2019 IEEE International Conference on Robotics and Automation (ICRA2019)
  • Tu Chenxi, Eijiro Takeuchi, Alexander Carballo and Kazuya Takeda, Real-time Streaming Point Cloud Compression for 3D LiDAR Sensor Using U-net, IEEE Access, vol. 7, pp. 113616-113625, 2019.


Learning based Autonomous Driving

Autonomous driving system need to cover various situations. In this research, we research learning based autonomous system to adapt various conditions. The system learn "how to run" from driving data using deep learning techniques.

自動運転車は様々な状況で走行できなければなりません。本研究では運転データからどのように走ればいいかを学習する、様々な環境に適応できる自動運転技術を研究しています。

  • Shunya Seiya, Daiki Hayashi, Eijiro Takeuchi, Chiyomi Miyajima, and Kazuya Takeda, “Evaluation of deep learning-based driving signal generation methods for vehicle control,” 4th International Symposium on Future Active Safety Technology toward zero traffic accidents (FAST-zero ’17), 6 pages, Sept. 2017.
  • Alexander Carballo, Shunya Seiya, Jacob Lambert, Hatem Darweesh, Patiphon Narksri, Luis Yoichi Morales, Naoki Akai, Eijiro Takeuchi, Kazuya Takeda, End-to-End Autonomous Mobile Robot Navigation with Model-Based System Support, Journal of Robotics and Mechatronics, 2018, Vol. 30 ,No. 4 , p. 563-583
  • Shunya Seiya, Alexander Carballo, Eijiro Takeuchi, Chiyomi Miyajima and Kazuya TAKEDA, End-to-End Navigation with Branch Turning Supportusing Convolutional Neural Network, ROBIO2018


Occlusion Aware Planning for Autonomous Vehicle

Autonomous driving in an urban area is a challenging task. An urban area is usually full of structures such as houses, buildings or bridges. These structures often cause occlusions. Despite usually being equipped with various types of sensors, occlusions caused by these structures prevent autonomous vehicles from fully observing the surroundings. This research proposes behavior decision methods using visibility information to realize safe autonomous driving.

市街地は自動運転にとってチャレンジングな環境です。市街地は建物等により囲まれており、それによりセンサの死角が多くでき、自動運転が安全に走行することを難しくしています。本研究では、どこが見えていてどこが見えていないかという情報を利用することで安全な自律走行を実現する動作計画法を提案しています。

  • Patiphon Narksri, Eijiro Takeuchi, Yoshiki Ninomiya, and Kazuya Takeda, Crossing Blind Intersections from a Full Stop Using Estimated Visibility of Approaching Vehicles, 2019 22st International Conference on Intelligent Transportation Systems (ITSC2019), TuE-T3.1,2019.


Recognition Assistance Interface for Autonomous Vehicles

To achieve fully autonomous driving, many problems remain to be solved. One important issue is how to accurately recognize obstacles in the surrounding environment and safely turn vehicle control over to the passenger. In this study, we propose a recognition assistance interface that enables the passenger to assist the recognition system of the autonomous driving system.

完全な自動運転を実現するためには多くの課題が残っており、現状では搭乗者の監視が必要です。ほぼ完全に動く自動運転車に対して搭乗者が監視を続けることは難しい課題であり、自動運転技術の普及の一つの問題になっています。本研究では、監視を怠った場合でも安全を維持でき、余裕をもって介入が可能である新しい方法として、自動運転の認識を搭乗者が支援するインターフェースの研究をしています。

  • Atsushi Kuribayashi, Alexander Calballo, Eijiro Takeuchi and Kazuya Takeda, Recognition Assistance Interface for Autonomous Vehicle, 5th International Symposium on Future Active Safety Technology toward zero traffic accidents (FAST-zero ’19), Sept. 2019.